Displaying 20251 - 20300 of 37815
Request date Sort ascending | Organisation name | Country | Search type | Topic | Link | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
05/04/2023 | Sima Sinaei | Vatican City | Expertise Request | Piloting emerging Smart IoT Platforms and decentralized intelligence (IA) (HORIZON-CL4-2024-DATA-01-03) | F&T portal | ||||||
Distributed Artificial Intelligence Systems - Federated learning: Federated Learning (FL) is a distributed machine learning approach that enables devices in the computing continuum to collaboratively learn a shared model while keeping data locally. FL can be used to optimise the performance of AI models by leveraging data from across the continuum, while still ensuring data privacy by not sharing raw data. Techniques that shall be explored include stochastic gradient descent. |
|||||||||||
04/04/2023 | Consortium Ubiquitous Technologies S.c.a.r.l. | Italy | Expertise Request | Communication Infrastructure Technologies and Devices (HORIZON-JU-SNS-2023-STREAM-B-01-03) | F&T portal | ||||||
Cubit is a SME specialised in IoT solutions and drones. We design and realise IoT systems for multiple markets, covering from hardware design to software development, including intelligent algorithms on resource-constrained devices, interoperability, integration with larger systems. We have experience with many wired/wireless communication technologies, and design of proprietary protocols. We realise unmanned vehicles of various sizes and for multiple applications, including custom auto-pilots. | |||||||||||
04/04/2023 | NUROMEDIA GMBH | Germany | Expertise Request | Wireless Communication Technologies and Signal Processing (HORIZON-JU-SNS-2023-STREAM-B-01-02) | F&T portal | ||||||
Nuromedia GmbH is a German software engineering & multimedia company with more than 15 years of experience in national and EU funded projects. Our team offers competences like software engineering, gamification, 2D/3D animation, UI/UX design, AR, MR & VR development, smart city, 5G, IoT, big data,digital twin and machine learning/AI. Our industry focus is Health, Energy, Telecommunication, E-learning, Education, Industry 4.0, Agriculture, Automotive. Contact info: [email protected] | |||||||||||
04/04/2023 | NUROMEDIA GMBH | Germany | Expertise Request | EU-US 6G R&I Cooperation (HORIZON-JU-SNS-2023-STREAM-B-01-06) | F&T portal | ||||||
Nuromedia GmbH is a German software engineering & multimedia company with more than 15 years of experience in national and EU funded projects. Our team offers competences like software engineering, gamification, 2D/3D animation, UI/UX design, AR, MR & VR development, smart city, 5G, IoT, big data,digital twin and machine learning/AI. Our industry focus is Health, Energy, Telecommunication, E-learning, Education, Industry 4.0, Agriculture, Automotive. Contact info: [email protected] | |||||||||||
04/04/2023 | INFOCERT SPA | Italy | Expertise Request | Reliable Services and Smart Security (HORIZON-JU-SNS-2023-STREAM-B-01-04) | F&T portal | ||||||
InfoCert is the largest Trust Service Provider in EU, providing trust and identity services (both according the traditional and the decentralised paradigm) which apply to natural/legal persons as well as to infrastructural components. We are willing to bring our expertise on trust frameworks and technologies to a consortium which could benefit from our contribution |