

Announcement TETRAMAX 3rd open call for

Value Chain Oriented and Interdisciplinary Technology Transfer Experiments (TTX)

Project acronym:	TETRAMAX	
Project full name:	TEchnology TRAnsfer via Multinational Application eXperiments	
Project grant agreement no.	761349	
Project web address	https://www.tetramax.eu	
Project coordinator	Prof. Rainer Leupers, RWTH Aachen University/DE leupers@ice.rwth-	
	aachen.de	
Open call title	3 rd open call for Value Chain Oriented and Interdisciplinary Technology	
	Transfer Experiments (TTX)	
Open call identifier	TETRAMAX-VALUECHAIN-TTX-3	
Open call publication date	31.08.2019	
Full open call information	https://www.tetramax.eu/ttx/calls/	
TTX online proposal submission	line proposal submission <u>https://tetramax.fundingbox.com/</u>	
platform		
TTX proposal submission deadline	30.11.2019, 23:59 CET (Brussels time)	
Expected TTX duration;	Between 10-12 months.	
estimated TTX start and end date	At the first day of the following month after entry into force of the	
	TTX funding agreement and as accepted by TETRAMAX. Any date prior	
	to March 1, 2020 is not possible. The TTX has to end by April 2021 at	
	the latest.	
otal financial support per TTX / TTX The average of the requested TTX financial support of a		
partner organisation	on €75,000 is preferred. Nevertheless, the TTX financial support can be	
	between €50,000 and €100,000 maximum (for all third parties	
	involved in the TTX).	
	Maximum possible funding per TTX partner over all TETRAMAX open	
	calls is limited to €60,000. Third parties involved in a TTX need to	
	make sure that they have not received more than €100.000 via open	
	calls (Financial Support to Third Parties/cascading funding) during the	
	entire H2020 ICT programme.	
Number and type of third parties	Three, or more partners (in case a multidisciplinary collaboration is	
involved in the TTX	needed), from at least two different EU member states or countries	
	associated to H2U2U; partners must be legal entities, such as	
	(mid-caps, large industries).	
Language of the proposal	English	
Request for more information	opencalls@tetramax.eu	

The project TETRAMAX, co-funded from the European Union's Horizon 2020 research and innovation programme under the grant agreement no. 761349, foresees as an eligible activity the provision of financial support to third parties, as means to achieve its own project objectives.

TETRAMAX and types of activities

Today's European industries are challenged by the fast developing digitalization era, making it increasingly difficult for small and medium-size enterprises (SMEs) to keep track with, and benefit from, modern ICT for their business and production cycles.

The innovation action TETRAMAX aims to boost innovation by stimulating, organizing and evaluating different kinds of Technology Transfer Experiments (TTX). These co-funded "application experiments" connect SMEs and other for-profit companies (mid-caps, large industry, etc.) with international academics, resulting in low-risk industrial adoption of novel computing technologies. TETRAMAX provides innovative advanced digital technologies for novel electronic and non-electronic products in the area of Customized Low-Energy Computing (CLEC) for Cyber-Physical Systems (CPS) and the Internet of Things (IoT) (Annex 1).

Additionally, building and leveraging a European Technology Brokerage Network (CCN) on CLEC will increase the exchange of technologies and solutions, hence increasing the opportunities for technology transfers. In the long term, TETRAMAX will be the trailblazer towards a reinforced, profitable, and sustainable ecosystem infrastructure, providing CLEC competence, services and a continuous innovation stream at European scale, yet with strong regional presence as preferred by SMEs.

TETRAMAX is one of the new initiatives established under the European *Smart Anything Everywhere* (SAE) initiative, which seeks to accelerate innovation within European industries.

Goal of a Value Chain Oriented and Interdisciplinary TTX

The TTX partnership has to consist of three or more partners representing a value chain from research over initial product innovation towards a wider market penetration. The TTX partners have to be based in at least two different EU member states or H2020 associated countries. This TTX type brings together:

- One academic partner (A) (university/polytechnics; research organisation) **providing** a particular novel CLEC hardware or software technology from research.
- One "Original Equipment Manufacturer" (OEM) partner (B) (preferably SMEs, or other for-profit company (mid-cap, large industry) **testing and deploying** the technology in its dedicated, possibly even non-tech, products with its end customers.
- Another industry partner (C) (preferably SMEs, other for-profit company (mid-cap, large industry) **productizing** this technology as a "platform" in the long-term for a wider market.
- In case any inter-/multidisciplinary cooperation is required for a successful TTX, up to three further **auxiliary partners** (from academia or industry) may be included in the TTX partnership.

Example:

A university (A) acts as a technology provider and intends to transfer a novel CLEC technology to a manufacturing SME (B) as a technology receiver in terms of non-exclusive licensing, together with training, services, and documentation, etc. as necessary. The technology receiver intends to experimentally use the new technology in order to enable improved products, processes, or services, thus acting as an OEM and early technology adopter. In case, the developed technology could be generalized and applied to other industries as well, another specialized partner (C) could engage as a "catalyst" (not competing with the technology receiver) to extend the value chain by productizing and maintaining the technology, e.g. in the form of customizable software tools, hardware IP and/or professional services, so as to serve a much broader market.

In case of a successful TTX, the "catalyst" would finally license a robust product back to the technology provider and a receiver and will also offer the technology and services as a platform to various other customers. **Auxiliary partners** may optionally assist in the transfer and the productization process.

It is assumed that the start TRL will typically be 3 (*experimental proof of concept*) or 4 (*technology validated in lab*), while the target TRL will be 8 (*system complete and qualified*) on average.

Details on this call incl. submission process and all relevant documents: https://www.tetramax.eu/ttx/calls/

Annex 1: TETRAMAX competence fields

٠	3D Modelling	Gamification	Quantum Computing
•	Additive Manufacturing (3D	Hardware/Software Codesign	Reconfigurable Computing
	printing)	Heterogeneous Computing	Robotics and Autonomous
٠	Aeronautics and Space	Human-Machine Interaction	Systems
	Applications	 Industrial Automation 	 Safety Critical Applications
•	Approximate Computing	 Integrated Circuit Design 	Semiconductor Manufacturing
•	Augmented and Virtual Reality	 Laser Technology 	 Sensors, Actuators, MEMS and
•	Automotive Electronics	 Location Based Technologies 	RF
•	Cloud Computing	 Low-Energy Computing 	 Smart Buildings
•	Cognitive Systems	Machine Learning	Smart Cities
•	Communication Technologies	 Market Intelligence 	 Smart Metering
•	Compiler Technology	 Medical and Health 	Smart Mobility
•	Computer Vision	Applications	Smart Textile
•	Cybersecurity	 Modelling and Simulation 	Software Performance Analysis
٠	Data Mining and Big Data	Using HPC	 Sound Processing
٠	Dependable and Fault Tolerant	 Multicore Systems 	 Speech Recognition
	Systems	 Multimedia Processing 	 Surveillance Technologies
•	Electronic System Level Design	 Nanotechnologies 	 Transport and Logistics
	and Tools	 Oil and Gas Applications 	 Video Processing
•	Embedded HPC	 Optimization Technologies 	 Virtual Prototyping
•	Environmental Protection	Parallel Programming	 Web and Mobile Applications
		Processor Architectures	Wireless Sensor Networks